Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels.
نویسندگان
چکیده
Increasing centralization of the control of fisheries combined with increased knowledge of food-web relationships is likely to lead to attempts to maximize economic yield from entire food webs. With the exception of predator-prey systems, we lack any analysis of the nature of such yield-maximizing strategies. We use simple food-web models to investigate the nature of yield- or profit-maximizing exploitation of communities including two types of three-species food webs and a variety of six-species systems with as many as five trophic levels. These models show that, for most webs, relatively few species are harvested at equilibrium and that a significant fraction of the species is lost from the web. These extinctions occur for two reasons: (1) indirect effects due to harvesting of species that had positive effects on the extinct species, and (2) intentional eradication of species that are not themselves valuable, but have negative effects on more valuable species. In most cases, the yield-maximizing harvest involves taking only species from one trophic level. In no case was an unharvested top predator part of the yield-maximizing strategy. Analyses reveal that the existence of direct density dependence in consumers has a large effect on the nature of the optimal harvest policy, typically resulting in harvest of a larger number of species. A constraint that all species must be retained in the system (a "constraint of biodiversity conservation") usually increases the number of species and trophic levels harvested at the yield-maximizing policy. The reduction in total yield caused by such a constraint is modest for most food webs but can be over 90% in some cases. Independent harvesting of species within the web can also cause extinctions but is less likely to do so.
منابع مشابه
Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries.
Sustainably managing ecosystems is challenging, especially for complex systems such as coral reefs. This study develops critical reference points for sustainable management by using a large empirical dataset on the coral reefs of the western Indian Ocean to investigate associations between levels of target fish biomass (as an indicator of fishing intensity) and eight metrics of ecosystem state....
متن کاملManaging fisheries involving predator and prey species
Several management strategies for ecosystems with biological interaction are discussed, including predator removal, predator-prey coexistence, prey exploitation, overexploitation, and introduction of sanctuaries. Some case studies related to ecosystem management are briefly presented; these describe Lakes Victoria and Tanganyika, discarding from shrimp trawl fisheries and the development in the...
متن کاملREV I EW A synthesis of subdisciplines: predator–prey interactions, and biodiversity and ecosystem functioning
Anthony R. Ives,* Bradley J. Cardinale and William E. Snyder Department of Zoology, UWMadison, Madison, WI 53706, USA Department of Ecology, Evolution and Marine Biology, UC-Santa Barbara, Santa Barbara, CA 93106, USA Department of Entomology, Washington State University, Pullman, WA 99164-6382, USA *Correspondence: E-mail: [email protected] Abstract The last 15 years has seen parallel surges of ...
متن کاملDetermining Optimal Catch in Age-Structured Multispecies Fisheries
This study investigates optimal catch of Barents Sea stocks, namely Northeast Arctic Cod and Capelin in multispecies ecosystem. We solve a multispecies age structured bioeconomic model for predator-prey interaction. Barents Sea stock data from ICES are employed for model application. Among others, we also include sustainability constraint in the model that contributes towards ecosystem based ma...
متن کاملTrophic signatures of seabirds suggest shifts in oceanic ecosystems
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2006